Identification of phenylcarbamoylazinane-1,3,4-oxadiazole amides as lipoxygenase inhibitors with expression analysis and in silico studies

Publication: Bioorg Chem
Software: ADMET Predictor®
Therapeutic Areas: Inflammation


In search for new anti-inflammatory agents that inhibit the enzymes of arachidonic acid pathway as the drug targets, the present article describes the screening of 1,3,4-oxadiazole analogues against lipoxygenase (LOX) enzyme. The work is based on the synthesis of new N-alkyl/aralky/aryl derivatives (6a-o) of 2-(4-phenyl-5-(1-phenylcarbamoylpiperidine)-4H-1,3,4-oxadiazol-3-ylthio)acetamide which were obtained by the reaction of 1,3,4-oxadiazole (3) with various electrophiles (5a-o), in KOH. The synthesized analogues showed potent to moderate inhibitory activity against the soybean 15-LOX enzyme; especially 6g, 6b, 6a and 6l displayed the potent inhibitory potential with IC50 values 7.15 ± 0.26, 9.32 ± 0.42, 15.83 ± 0.45 & 18.37 ± 0.53 µM, respectively, while excellent to moderate inhibitory profiles with IC50 values in the range of 26.13–98.21 µM were observed from the compounds 6k, 6m, 6j, 6o, 6h, 6f, 6n and 6c. Most of the active compounds exhibited considerable cell viability against blood mononuclear cells (MNCs) at 0.25 mM by MTT assay except 6f, 6h, 6k and 6m which showed around 50% cell viability. Flow cytometry studies of the selected compounds 6a, 6j and 6n revealed that these caused 79.5–88.51% early apoptotic changes in MNCs compared with 4.26% for control quercetin at their respective IC50 values. The relative expression of 5-LOX gene was monitored in MNCs after treatment with these three molecules and all down-regulated the enzyme activity. In silico ADME and molecular docking studies further supported these studies of oxadiazole derivatives and considered it as potential ‘lead’ compounds in drug discovery and development.

By Bushra Bashir, Wardah Shahid, Muhammad Ashraf, Muhammad Saleem, Aziz-ur-Rehman, Saima Muzaffar, Muhammad Imran, Hira Amjad, Keshab Bhattarai, Naheed Riaz