Resource Center

Oct 19, 2015

Mathematical Model-Based Accelerated Development of Extended-release Metformin Hydrochloride Tablet Formulation

Abstract

A computational fluid dynamic (CFD) model was developed to predict metformin release from a hydroxypropylmethylcellulose (HPMC) matrix-based extended-release formulation that took into consideration the physical and chemical properties of the drug substance, composition, as well as size and shape of the tablet. New high dose strength (1000 mg) tablet geometry was selected based on the surface area/volume (SA/V) approach advocated by Lapidus/Lordi/Reynold to obtain the desired equivalent metformin release kinetics. Maintaining a similar SA/V ratio across all extended-release metformin hydrochloride (Met XR) tablet strengths that had different geometries provided similar simulations of dissolution behavior. Experimental dissolution profiles of three lots of high-strength tablets agreed with the simulated release kinetics. Additionally, a pharmacokinetic absorption model was developed using GastroPlus™ software and known physicochemical, pharmacokinetic, and in vitro dissolution properties of metformin to predict the clinical exposure of the new high strength (1000 mg) tablet prior to conducting a human clinical bioequivalence study. In vitrometformin release kinetics were utilized in the absorption model to predict exposures in humans for new 1000-mg Met XR tablets, and the absorption model correctly projected equivalent in vivo exposure across all dose strengths. A clinical bioequivalence study was pursued based on the combined modeling results and demonstrated equivalent exposure as predicted by the simulations.

Contact Us About This Journal Article